


probabilities), although the logistic function can be applied to obtain the log odds. In this paper we
consider three potential candidates: Cramér’s ¢, adjusted C and Bayesian dependency.

Given this range of potential measures for effect size, two questions arise.

Measures of association for r x ¢ tables -2- © Sean Wallis 2012, 2020



¢ has a value of 0 when there is no association between the two values, that is, when the
probability of selecting a value of A is constant for any value of B.

2. o 2 +n_.ncs In Appendix 1 we prove that Cramér’s ¢(A, B) ¢ measures the linear
interpolation from flat to identity matrix (see Figure 1 for the idea). We can therefore refer to ¢
as the best estimate of the population nsw - wn..ns. w0 } vy idp= p(@a < b). This
intercorrelation is robust, i.e. it ‘gracefully decays’ the further it 8dviates from this ideal. ¢ is
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We note the following.

1. Relative dependency dpgr(B, A) is linear with x when p(a) is even.

2. Measures are ordered in size: Cagj > dpr(B, A) > ¢ > dpr(A, B).

3. dpr(A, B) (and therefore ¢) converges to dpr(B, A) as p(b) becomes more even (tends to 1/k).

Whereas dpr measures the distance on the first parameter from the prior (and is thus directional
when a prior skew is applied to one variable only), ¢ is based on the root mean square distance of
both variables. C,q; appears to behave rather differently to ¢, as the right hand graph in Figure 2
shows. Given that the only other bi-directional measure, ¢, measures the interdependence of A and
B, there appears to be little advantage in adopting the less conservative Cag;.

Finally, for k = 2 the following equation also holds:
4. ¢ = dpr(A, B) x dpr(B, A).

We find an equality between a classical Bayesian approach to dependency and a stochastic
approach based on Pearson’s  for one degree of freedom. The proof is given in Appendix 3.

This raises the following question: what does “directionality’ mean here?
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6. A worked example

Figure 3 provides a demonstration of plotting
confidence intervals on ¢
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Appendix 1. The best estimate of population interdependent probability is
Cramér’s ¢

Crameér’s ¢ is not merely a “measure of association’. It repres
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Appendix 2. Deriving 2 x 2 rule dependency
For a 2 x 2 table with a single degree of freedom, the following axioms hold.

Al.  p(a =p(-a1) = 1-p(a); p(az| bi) = p(-az| by) =1 - p(as| by),
A2.  p(ai|bi) - p(as) = p(az) - p(az| bi),
A3.  [p(az|bi) < p(ai)] <> [p(az) < p(az| bi)].

Al is a consequence of the Boolean definition of A, A2 can be demonstrated using Bayes’ Theorem
and A3 is a consequence of A2. A2 further entails that row sums are equal, i.e. dpr(a;, B) =

dpR(az, B)
Equation (5) may therefore be simplified as follows

k k k

dpr(AB)=-" dpo(ab)xP() = dpg(a,b,)x (b))
- p(al |b1) — p(al) x p(b,) + p(al) — p(al | bz)

1-p(a,) p(a;)

x p(b,) -

Applying Bayes’ Theorem (p(a; | b2) = p(b2| a1) % p(ai) / p(b2)) and axiom Al:

p(a [b)p®) _ p(a)pb,)  pa [b)p,)

dpr(A, B) = 1- p(a,) 1-p(a,) p(a;)

p(b,).

The first and third terms then simplify to [p(as | b1)p(b1)] / [(1 - p(a1))p(as)], so

p(al | bl) p(bl) — p(al)z p(bl) — (1_ p(al)) p(al) p(bl)
(1-p(a))p(a)

- [p(al | bl)_ p(al)]p(bl)

[l-p@)lp(@)

dpr(A, B) =

Appendix 3. For a 2 x 2 table, ¢° = dpr(A, B) x dpgr(B, A)
The proof is in three stages.

S
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STAGE 2. Converting to a+b+c+d notation.

The 2 x 2 x* statistic, and thus ¢, may be represented simply in terms of four frequencies in the
table, a, b, ¢ and d (note roman font to distinguish from a, a;, etc). The table is labelled thus, and N
= atb+c+d:
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