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How might we test if the tables are significantly different from each other?

We can plot Table 1 as two independent pairs of probability observations, as in Figure 1. We
calculate the proportion p = f/n
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For the same-population z test (equivalent to the 2 × 2 χ2
 test) we may substitute the pooled

probability estimate p^ for both P1 and P2. We have p^ = F/N, and (3) becomes

standard deviation sd ≡ )()ˆ1(ˆ
21

11
nn

pp +− . (4)

In the case of independent populations, population means P1 and P2 could be different. Sheskin
(1997: 229) simply proposes that we substitute the observed probabilities p1 and p2 into (3),
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purposes, only the inner side need be considered. In Figure 3, p1

> p2, d is positive, and we compute wd

+
 from the inner intervals

indicated.
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Table 4 shows the computation for the data in Table 3.

shall will shall will p1 p2 p
^

s
2 χ2

1960 Tf
0.9994279o9
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data, this obtains the Newcombe-Wilson difference intervals for d1 and d2. We can write these as
follows:

d1 = 0.2500 – (-0.0682, 0.0775) > 0, and
d2 = 0.1328 – (-0.0410, 0.0429) > 0.

We then apply the sum of variances rule to two inst
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data with Wilson score intervals leads us naturally to the Newcombe-Wilson point test (section 3.1)
and, if required, the Newcombe-Wilson meta-homogeneity test (4.2).
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The summation is similar to that applied to the r × 2 test for homogeneity. Pearson’s χ2
 is the square

of the z distribution extended over any number of degrees of freedom (Wallis 2013b). We may
convert a sum of r squared z scores to a chi-square score. We obtain equation (12), a formula whose
form we have already seen, although in this case the terms refer to those above.
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Observant readers may note that this formula differs from Pearson’s χ2
 by computing variance with

the Gaussian s
2
 = p(1 – p) / n, and dividing by 2. We divide by two because the summation ‘sums

the z test twice’. The test is evaluated against the critical value of χ2
 with r – 1 degrees of freedom.

6. Heterogeneity χχχχ2 tests
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We can define a general contingency table T as:

N p^  α N p^  (1 – α) N p^

T(N, π,  p^) = N(1 –  p^)(1 – α) N(1 –  p^)α N(1 –  p^) ,

N (1 – p^  – α + 2α p^) N (p^  + α – 2α p^) N

where α = (π+1)/2. By creating two tables T1 and T2
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The common practice of citing χ2
 scores or error levels combines two distinct concepts: the size of

the effect (e.g. φ) and the size of the data (N). The correct approach is to construct significance tests
for the comparisons you wish to make.

One approach, applicable to homogeneity (independence) tests, is to employ a ‘point test’, or
‘multi-point test’, to compare points or datasets. This allows us to claim that the data in one table
(sample) is distributed significantly differently than in another table. A point test is an independent
homogeneity test expressed across the dependent variable and table. The multi-point test simply
sums these tests along an independent variable.

Why then might we wish to employ a ‘gradient test’? There are two circumstances. First, because
we have already expressed experimental claims in terms of change: “the dependent variable has
increased/decreased in our data”. We wish to compare this claim with other similar claims in the
literature. Second, in order to compare goodness of fit test results, the only option is a gradient test.

With one degree of freedom, effect sizes differ in one dimension: there is a single difference of
differences. If this difference is greater than a certain limit then we can say that ‘the difference is
significant’, i.e. the difference of differences is
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