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observation. A confidence interval tells us that at a given level of certainty, if our scientific model is

correct, the true value in the population will likely be in the range identified. The larger the

confidence interval, the less certain the observation will be. There are several different approaches

to calculating confidence intervals, and we will begin by discussing the most common method.

2.1 The ‘Wald’ interval

The standardised ‘Wald’ confidence interval employs
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Fully-skewed values, i.e. where p(shall) = zero or 1, obtain zero-width intervals, highlighted in

bold in Column A. However an interval of zero width represents complete certainty. We cannot say

on the basis of a single observation that it is certain that all similarly-sampled speakers in 1958 used

shall in place of will in first person declarative contexts! Secondly, Column C provides two
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for low or high p values or for small n – which is hardly satisfactory! Fewer than half the values of

p(shall) in Table 1 satisfy this rule (the empty points in Figure 3). Needless to say, when it comes to

line-fitting or other less explicit uses of this estimate, such limits tend to be forgotten.

A similar heuristic for the χ2
 test (the Cochran rule) avoids employing the test where expected cell

values fall below 5. This has proved so unsatisfactory that a series of statisticians have proposed

competing alternatives to the chi-square test such as the log-likelihood test, in a series of attempts to

cope with low frequencies and skewed datasets. In this paper we distinguish two mathematical

problems with the Wald interval – that it incorrectly characterises the interval about p and that it

fails to correct for continuity – and then evaluate competing test methods by a combination of

plotting limits and exhaustive computation.

2.2 Wilson’s score interval

The key problem with the conventional Wald definition is that the confidence interval is incorrectly

characterised. Note how we assumed that the interval about p was Binomial and could be

approximated by the Normal distribution. This is the wrong way to think about the problem, but it is

such a common error that it needs to be addressed.

The correct characterisation is a little counter-intuitive, but it can be summarised as follows.

Imagine a true population probability, which we will call P. This is the actual value in the

population. Observations about P will be distributed according to the Binomial. We don’t know

precisely what P is, but we can try to observe it indirectly, by sampling the population.

Given an observation p, there are, potentially, two values of P which would place p at the outermost

limits of a confidence interval about P. See Figure 4. What we can do, therefore, is search for

values of P which satisfy the formula used to characterise the Normal approximation to the

Binomial about P.
2
 Now we have the following definitions:

population mean µ ≡ P,

population standard deviation σ ≡ nPP /)1( − , (2)

population confidence interval (E
–
, E

+
) ≡ (P – zα/2.σ, P + zα/2.σ).

The formulae are the same as (1) but the symbols have changed. The symbols µ and σs
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P1 + zα/2.σ1 and p = E2
– 

= P2 – zα/2.σ2. With a computer we can perform a search process to converge

on the correct values.

The formula for the population confidence interval above is a Normal z interval about the

population probability P. This interval can be used to carry out the z test for the population

probability. This test is equivalent to the 2 × 1 goodness of fit χ2
 test, which is a test where the

population probability is simply the expected probability P = E/n.

Fortunately, rather than performing a computational search process, it turns out that there is a

simple method for directly calculating the sample interval about p. This interval is called the

Wilson score interval (Wilson, 1927) and may be written as

Wilson score interval (w
–
, w

+
) ≡ 
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The score interval can be broken down into two parts on either side of the plus/minus (‘±’) sign:

1) a relocated centre estimate p' = 

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2) a corrected standard deviation s' = 
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such that w
–
 = p' – zα/2.s' and w

+
 = p' + zα/2.s'.

3
 We will use lower case w to refer to the Wilson

interval.

The 2 × 1 goodness of fit χ2 
test checks for the sample probability falling within Gaussian intervals

on the population distribution, i.e. E
– 

< p < E
+
. This obtains the same result as testing the population

probability within the sample confidence intervals, w
–
 < P < w

+
. We find that where P = w

–
, p = E

+
,

which is sketched in Figure 4. As the diagram indicates, whereas the Normal distribution is

symmetric, the Wilson interval is asymmetric (unless p = 0.5).

Employing the Wilson interval on a sample

probability does not itself improve on this χ
2
 test. It

obtains exactly the same result by approaching the

problem from p rather than P. The improvement is

in estimating the confidence interval around p!

If we return to Table 1 we can now plot confidence

intervals on first person p(shall) over time, using the

upper and lower Wilson score interval bounds in

Columns D and E. Figure 5 depicts the same data.

Previously zero-width intervals have a large width –

as one would expect, they represent highly uncertain

observations rather than certain ones – in some

instances, extending nearly 80% of the probabilistic

range. The overshooting 1960 and 1970 datapoints

in Figure 3 fall within the probability range. 1969

and 1972, which extended over nearly the entire

                                                
3
 One alternative proposal, termed the Agresti-Coull interval (Brown et al. 2001) employs the adjusted Wilson centre p'

and then substitutes it for p into the Wald standard deviation s (see Equation 1). We do not consider this interval here,

whose merits primarily concern ease of presentation. Its performance is inferior to the Wilson interval.

Wilson  p

0

0.1
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range, have shrunk.

How do these intervals compare overall? As we have seen, the Wilson interval is asymmetric. In

Equation 4, the centre-point, p', is pushed towards the centre of the probability range. In addition,

the total width of the interval is 2zα/2.s' (i.e. proportional to s'). We compare s and s' by plotting

across p for different values of sample size n in Figure 6. Note that the Wilson deviation s' never

reaches zero for low or high p, whereas the Gaussian deviation always converges to zero at

extremes (hence the zero-width interval behaviour). The differences between curves reduces with

increasing n
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tail is (1 – P). The coin may be biased, so P need not be 0.5!

The population Binomial distribution of r heads out of n tosses of a coin with weight P is defined in

terms of a series of discrete probabilities for r, where the height of each column is defined by the

following expression (Sheskin, 1997: 115):

Binomial probability B(r; n, P) ≡ )()1(. rnr PPnCr −− . (5)

This formula consists of two components: the Binomial combinatorial nCr (i.e. how many ways one

can obtain r heads out of n
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Figure 9 shows that log-likelihood matches the

Binomial P more closely than χ2
 for r ≤ 3, n = 5 and

α = 0.05, which may explain why some researchers

such as Dunning (1993) have (incorrectly) claimed its

superiority. However it is less successful than

uncorrected χ2
 overall. In any event, it is clearly

inferior to Yates’ χ2
 (cf. Figure 7 and Table 2).

3. Evaluating confidence intervals

Thus far we have simply compared the behaviour of

the interval lower bound over values of x. This tells us

that different methods obtain different results, but does

not really inform us about the scale of these

discrepancies and their effect on empirical research.

To address this question we need to consider other

methods of evaluation.

3.1 Measuring error

Statistical procedures should be evaluated in terms of the rate of two distinct types of error:

• Type I errors, or false positives: this is so-called ‘anti-conservative’ behaviour, i.e. 
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likelihood are 0.0095, 0.0014 and 0.0183 respective
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In ex post facto corpus analysis, this corresponds to a situation where samples are taken from the

same population and the independent variable (as well as the dependent variable) represents a free

choice by the speaker. This is a within-subjects design, where either value of the independent

variable (IV) may be uttered by the same speaker or appear in the same source text. Alternative

tests are the 2 × 2 χ2
 test (including Yates’ test) and log-likelihood test. These tests can be translated

into confidence intervals on the difference between p1 and p2 (Wallis forthcoming).

We may objectively evaluate tests by identifying Type I and II errors for conditions where the tests

do not agree with the result obtained by Fisher’s sum test. Figure 12 plots a map of all tables of the

form [[a, b] [c, d]] for all integer values of a, b, c, d where n1 = a + b = 20 and n2 = c + d = 20. We

can see that in both cases, there are slightly more errors generated by G
2
 than χ2

, and Yates’ χ2
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Given this common derivation, we would anticipate that this second pairwise comparison will

obtain comparable results to the evaluation of intervals for the single proportion discussed in section

3. Figure 15 plots the result of comparing Newcombe-Wilson tests, with and without continuity
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5 × n2
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We found that the optimum tests were Yates’ test (when data is drawn from the same population)

and the Newcombe-Wilson test with continuity correction (for data drawn from independent

populations). Yates’ test can also be used in the latter condition, and is advisable if the smaller

sample size (row total) is 15 or below.

It is worth noting that the corresponding z test suggested by Sheskin (1997) performs poorly

because it generalises from the Wald interval. Log-likelihood also performs poorly in all cases,

despite its adherents (e.g. Dunning 1993) whose observations appear premised on only the lower

part of the interval range. Our results are consistent with Newcombe (1998b) who uses a different

evaluation method and identifies that the tested Newcombe-Wilson inner (‘mesial’) interval is

reliable.

Finally, the Bienaymé formula (15) may also be employed to make another useful generalisation. In

Wallis (2011) we derive a set of “meta-tests” that allow us to evaluate whether the results of two

structurally identical experiments performed on different data sets are significantly different from

one another. This allows researchers to compare results obtained with different data sets or corpora,

compare results under different experimental conditions, etc. Meta-testing has also been used to

pool results which may be individually insignificant but are legitimate to consolidate.

Our approach is superior to comparing effect size numerically or making the common logical error

of inferring that, e.g., because one result is significant and another not, the first result is

‘significantly greater’ than the second. (Indeed, two individually non-significant test results may be

significantly different because observed variation is in opposite directions.)
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is that if any utterance by any speaker could be accounted for in any cell in the table, then the

summation should be performed in both directions at the same time.

An alternative test using the same configuration is more appropriate when samples are taken from

different populations, and the independent variable is not free to vary. In this case we sum ‘exact’

Binomial (Clopper-Pearson) intervals (section 4.2) in one direction only: within each sample

(finding P for Equation 7), and then combine intervals assuming that variation is independent

(Equation 15).

We may compare the performance of the two tests by the same method as in section 6 of the paper:

identify table configurations where one test obtains a significant result and the other does not. For

n1 = n2 up to 100 and n1 = 5n2


