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Abstract 

Close modes are much more difficult to identify than well-separated modes and their identification 

(ID) results often have significantly larger uncertainty or variability. The situation becomes even 

more challenging in operational modal analysis (OMA), which is currently the most economically 

viable means for obtaining in-situ dynamic properties of large civil structures and where ID 
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spatial (mode shape) properties by matrix-decomposition of the PSD matrix 
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loss of information); and probabilistic information in data has been processed in a consistent 

manner following rigorously Bayes’ rules.    

2 Wide
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Figure 1 Schematic diagram showing the theoretical singular value spectrum of ambient data on a 
resonance band with two close modes 

In the above context, we have obtained analytical expressions for the ‘remaining’, i.e., ID uncertainty, 
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See Figure 6 later for a geometric interpretation. The definitions of the above parameters are 

motivated from the analytical expressions of the c.o.v.s, i.e., they carry fundamental significance 

instead of being empirically defined. See Table 7 of the companion paper for a summary. 

2.2 Natural frequencies and damping ratios 
Compared to mode shapes, the ID uncertainty of frequencies and damping ratios for close modes 

are affected in a less systematic manner by disparity. They are only correlated with Type 2 mode 

shape uncertainty. We show that the c.o.v. of natural frequencies if�G  and damping ratios i�]�G  are 

given by (see Section 6.5 of companion paper for proof) 
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where ifQ  and iQ�]  are coherence factors given by: 
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ifR  and iR�]  are factors that depend on the phase angles �I , �\  and iii ec /tan 1��� �I : 
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where 11 � s  and 12 ��� s . Note that swapping the sines and cosines in ifR  gives iR�] . 
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3 Qualitative analysis and insights 
As uncertainty law, (1), (8) and (9) give the leading order value of the remaining uncertainty about 

the modal properties identified from ambient vibration data under test configuration and 

environment quantified by various parameters in the formulae. 
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3.2 What difference do close modes make? 
For instructional purpose it is useful to review the uncertainty law for well-separated modes so that 

we can see what difference the close mode problem makes and what factors matter. For well-

separated modes identified with a wide resonance band, the c.o.v.s are given by [39]  
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The c.o.v.s in (2), (3), (8) and (9) have been written as the values for well-separated modes 

multiplied by various effects brought by close modes. The c.o.v.s of frequencies and damping ratios 

are only affected by modal force coherence �F 
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or when the two modes get closer (smaller id ). In Sections 3.3 to 3.5 to follow, we discuss 

systematically the effect of modal disparity (i.e., how modes differ) and modal force coherence.        

3.3 Modal disparity 
One basic question in the study of close modes is  

‘How close is close?’ 

Equation (3) reveals that for ID uncertainty the fundamental definition that measures the difference 

of modes in an overall sense is 22
iii ecd ��� , where iiiji fffe �]/)( ���  and 

iiiijji
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Figure 4 Dynamic amplification factors of two modes with different frequency disparities 1e  of 0.5 
(very close), 1 (close), 5 (separated) and 10 (well-separated). The two modes have the same 
damping (1%) and so ii ed �|   

As a note, it may appear from (3) that decreasing damping increases i�3�G�c�c  
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(11) also depend on the phase angles �\ , �I  and i�I  through the factors ifR and iR�]  in (12) and 

(13). Such dependence is trigonometric in nature and is of less significance than those on 2q  and 

|| �F . It is shown in Section 11 (appendix) that 
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Substituting into (10) or (11), 
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Figure 5 Lower bound ( 2||1 �F�� ) and upper bound ( 12 )||1( ���� �F ) of coherence factors ifQ  and 

iQ�]  in (21); iQ�3  share the same upper bound but it is bounded below by 1, see (18).   

 

3.4.2 Effect of disparity on modal entangling factors iq  

The effect of disparity parameters ( ie , ic ) on the modal entangling factors iq  is obscured by their 

relationship with another two entangling factors ig  in (6), on which iq  in (5) depends. Generally, 

increasing disparity reduces the magnitude of iq  and hence the influence of coherence, which is 

intuitively correct. It can be shown by direct algebra that the following identity holds: 
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Figure 6 Geometric interpretation of the effect of disparity on modal entangling factors 1g , 2g  

and 2q  in (5). Note that )2sin(21
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where ],[ 21 �3�3�- �  ( 2�un  real partial mode shape matrix) and T
kkk pp ],[ 21� �S  ( 12 �u  complex 

vector of modal forces) is the scaled FFT of modal forces and k��  is the scaled FFT of noise. 
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length can be significantly longer than that for well-separated modes when disparity is small (even 

for noiseless data). This governs the achievable identification precision of close modes. It should be 

noted that the issue of disparity discussed here is related to the temporal/frequency rather than 

spatial aspect of response/data. It does not have a direct linkage with observability that is often 

discussed in the system identification literature.  

4 Bandwidth and s/n ratio effect 
The results in Section 2 assume that the resonance band for modal ID is sufficiently wide, in the 

sense that 1�!�!�N  and ie�!�!�N . In the development of theory it was found necessary to introduce 

this assumption in order to obtain rigorously the closed form asymptotic expressions for c.o.v.s with 

reasonable simplicity as presented in the section. On other hand, the expressions capture only the 

leading order of the c.o.v.s which turn out to be independent of the noise PSD eS  and hence s/n 

ratio, except for Type 1 mode shape uncertainty which is nevertheless negligible for high s/n ratio. 

Finite bandwidth and s/n ratio encountered in reality do make a difference to ID uncertainty 
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In Table 1,  
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Check that these mode shapes have unit norm and their MAC is �U
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|| �F  on 0-1 and �I  on 0 - 2�S 
Resulting �N = 10 – 20+, s/n ratio = 1000 – 104+ 
Figure 10 

Lab model 
 
 

600 sec/set  
x 54 set = 3 h 
at 256Hz 

4 DOFs, xy at 
two corners on 
long side of top 
floor 

3-storey shear frame, 5kg per floor, wide 
bandwidth, low to high s/n ratio with electric 
fan at different distances 

� �N 2 – 20, s/n ratio = 10 – 104+ 
Figure 11 and Figure 12 

Building B 
in [12] 

30 min./set  
x 72 set = 36 h 
at 50Hz 

3 DOFs, xyz near 
core on roof; 
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Figure 9 Some structures considered in the study 

 

5.1 Synthetic data 
The synthetic data features a moderately high s/n ratio (>1000), wide band ( 10�!�N ) and long data 

(about 1000 natural periods in each set). One hundred data sets with different modal properties are 

randomly generated to cover a variety of scenarios. Figure 10(a)-(c) show the c.o.v.s of frequencies, 

damping ratios and mode shapes. Recall that the mode shape c.o.v. is defined as the square root 

sum of eigenvalues of the mode shape posterior covariance matrix. For small value, it can be 

interpreted as the expected hyper-angle between the uncertain mode shape and its MPV. The x-axis 

shows the values calculated by Bayesian modal ID algorithm (BAYOMA) [28] for each data set. This is 

the value one uses in applications for assessing ID uncertainty conditional on the particular data set 

when it is available; but the point-wise value does not explain the calculated uncertainty. In 

BAYOMA, the most probable value (MPV) of modal parameters is first calculated by minimising the 

negative log of the likelihood function (NLLF). The posterior covariance matrix of modal parameters 

is then calculated as the inverse of the Hessian of NLLF evaluated at the MPV. Each diagonal entry of 

this matrix gives the corresponding posterior variance of the parameter, which subsequently gives 

the c.o.v. (= square root of variance/MPV) that is plotted on the x-axis.  

In Figure 10(a)-(c), the y-axis shows the uncertainty law values developed based on different 
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uncertainty. The red circles show the values based on the inverse of the exact Fisher Information 

Matrix (FIM); see Section 3.1 and (14). Being a theoretical ensemble average over long data in 

hypothetical repeated experiments distributed according to the same likelihood function of 

BAYOMA, the exact FIM (or uncertainty law) value does not depend on the particular data set used 

but rather the ‘true’ modal properties (which is assumed to exist). Although the latter is known in 

this synthetic data example, it is not known (in fact, does not exist) in general applications with 

experimental data. To be consistent with the general context, when calculating the exact FIM (or 

uncertainty law) value the true parameter value is substituted by the most probable value (MPV) 

calculated by BAYOMA based on the particular data set. Statistically significant deviation of the exact 

FIM values (red circles) from the 1:1 line is an indication of modelling error for that particular data 

set. For its semi-analytical nature, the exact FIM can be considered as one step towards explaining ID 

uncertainty. Nevertheless its implicit nature (e.g., still in terms of matrices) does not yet allow direct 

insights to be developed. This ultimate goal is addressed by the uncertainty law developed, i.e., wide 

band expressions ((1), (8) and (9)) modified by the factors in Table 1 to account for finite bandwidth 

and s/n ratio. Their values are shown as crosses (‘x’) in Figure 10(a)-(c). They represent the best 

effort of this work to explain the ID uncertainty of close modes. They agree with the red circles, 

effectively verifying the mathematical correctness of the wide band law.  

As a remark, if the data used is long and it is indeed distributed as the same likelihood function as in 

BAYOMA/FIM, i.e., no modelling error (as is possible for synthetic data here), the BAYOMA value (x-

axis) will theoretically converge (in a statistical sense) to the exact FIM value (y-axis, red circle). In 

this sense the exact FIM value is the closest analytical value one can get to match the BAYOMA value; 

see [45] for a further discussion. However, this convergence is only a theoretical statement which 

can at best be expected from synthetic data because no model is perfect for experimental data. This 

aspect of convergence is only relevant in the verification of mathematical correctness (at the 

research stage) of the exact FIM or uncertainty law where synthetic data must be used. It is 

irrelevant to the intended application of uncertainty law, however, which is to understand and 

manage ID uncertainty for planning tests where no data is available. 
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Figure 10(e) shows iQ�]  in (11), which is the amplification of damping c.o.v. due to modal force 

coherence �F. The amplification depends on || �F  and other parameters but it is bounded between 

2||1 �F��  and 12)||1( ���� �F as in (21). This is demonstrated in the plot. Finally, Figure 10(f) shows the 

values of || �F  and �U (MAC) among the data sets. For the synthetic data sets here they are 

distributed uniformly merely because of the way they are generated. For the laboratory and field 

cases later they reflect statistics in the corresponding situations. 

5.2 Laboratory and field data 
We now discuss the results of the laboratory and field data in a collective manner w.r.t. different 

aspects. Figure 11, Figure 13, Figure 15, Figure 17 and Figure 19 show the spectra (PSD and SV) of a 

typical data set in each case. The results analogous to Figure 10 are summarised in Figure 12, Figure 

14, Figure 16, Figure 18 and Figure 20. 

The cases collectively cover low to high s/n ratios, from a few tens to over ten thousand. The 

laboratory shear frame is intended to provide an experimental case under controlled environment. 

Rugeley Chimney provides a case with obvious violation of modelling error, i.e., non-classical 

damping due to tuned mass damper (TMD). Modal ID of the field structures has been studied 

previously; see references in the first column of Table 2. The current investigation provides an 

opportunity to understand their ID uncertainties. The tall building, lighthouse and chimney have 

close fundamental modes that govern their vibration response, giving compelling reasons for their 

proper identification and understanding. The lighthouse data is unconventional; obtaining it is a 

challenge in itself.   

On the verification side, in the plots (a)-(c) of Figure 12, Figure 14, Figure 16, Figure 18 and Figure 20, 

the crosses roughly match with the red circles, suggesting that the proposed formulae (wide band 

expressions with empirical factors) can give a good match with what can be best achieved (exact 

FIM). Outliers do exist, e.g., for laboratory frame (one point in Figure 12(c)). The amount of 

scattering in the crosses and circles about the 1:1 line is similar in all cases except for Rugeley 

Chimney, which is a special case with modelling error to be discussed later. Similar to the case of 

synthetic data, the green dots (well-separated modes law) in plot (c) fall below the 1:1 line by orders 

of magnitude, showing that they fail to explain the ID uncertainty of mode shapes of close modes. 
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Table 3 gives a summary of the statistics of the identified (MPV) damping ratio, disparity, coherence 

and MAC between the two modes in each band. It can be examined together with plots (d)-(f) in 

Figure 12, Figure 14, Figure 16, Figure 18 and Figure 20. 
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Table 3 Summary of statistics for experimental cases. Some low values of disparity and high values of coherence and MAC are highlighted in bold  

  Damping i�]  Disparity id  Coherence || �F  MAC || �U  
Case Band Min. Mean Max. Min. Mean Max. Min. Mean Max. Min. Mean Max. 
Lab frame 1 0.5% 0.7% 1.1% 1.1 2.2 3.8 0.03 0.17 0.38 0.00 0.07 0.23 
(Figure 10) 2 0.6% 0.8% 1.0% 1.3 2.0 2.7 0.09 0.23 0.45 0.00 0.21 0.51 
 3 0.4% 0.9% 2.0% 1.3 3.7 6.9 0.01 0.20 0.36 0.01 0.11 0.26 
Tall building 1 0.3% 1.4% 3.9% 0.3 2.1 10 0.03 0.31 0.82 0.00 0.24 0.85 
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Figure 11 PSD and SV spectra of a typical data set, laboratory shear frame 

 

 

Figure 12 Summary of results, Laboratory shear frame. Same legend as Figure 10 
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Figure 13 PSD and SV spectra of a typical data set, tall building 

 

 

Figure 14 Summary of results, tall building. Same legend as Figure 10 
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Figure 15 PSD and SV spectra of a typical data set, Eddystone lighthouse 

 

 

Figure 16 Summary of results, Eddystone lighthouse. Same legend as Figure 10 
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Figure 17 PSD and SV of a typical data set, Jiangyin Yangtze River Bridge 

 

 

Figure 18 Summary of results, Jiangyin Yangtze River Bridge. Same legend as Figure 10 
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6 Practical implication and recommendation 
Well-separated modes are conventional subjects in modal ID. A logical way to think about the 

implications of uncertainty law of close modes developed in this work is to see what concepts or 

requirements need to be adjusted/introduced beyond those already in place for well-separated 

modes [39]. This is how the c.o.v.s of frequencies and damping ratios in (8) and (9) have been 

written. Close modes bring in the coherence factors ifQ  and iQ�]  in (10) and (11). It is more useful 

to think of the coherence factors in terms of the bounds in (21); see also Figure 5. Further correction 

to capture the effect of bandwidth and s/n ratio is needed. This can be done using the empirical 

factors in Table 1, where the modal s/n ratio i�J�c�c is equal to the old one for well-separated modes 

( i�J�c) discounted by )||1( 2�F��  and )1( 2�U�� .  

Close modes bring additional uncertain dimensions to mode shapes and this overturns our intuition 

about the governing uncertainty accumulated for well-separated modes. Mode shape uncertainty is 

no longer negligible. It can even render the problem unidentifiable. For well-separated modes it is 

always orthogonal to the identified mode shape direction (Type 1, see (2) and Figure 2) and is 

negligible for high s/n ratio. For close modes, Type 1 uncertainty remains to be negligible for high s/n 

ratio, but the additional non-vanishing uncertainty (Type 2, see (3)) smearing between mode shapes 

is of the same order of magnitude as or even larger than damping uncertainty. Based on (3), one can 

think of the mode shape c.o.v. (Type 2) as being equal to the damping c.o.v. amplified by the effects 

of disparities ( id/1  and iijj SS / ), MAC ( �U��1 ) and coherence ( iQ�3 ). It is useful to think of 

iQ�3  in terms of its upper bound, which coincides with those of frequency and damping in Figure 5. 

Accordingly, doubling the c.o.v. will account for the effect of coherence in most cases.    

6.1 Planning for well-separated modes – what we already knew 
Uncertainty law for well-separated modes was developed in [39] to allow one to manage 

quantitatively the ID uncertainty. In this case damping uncertainty is the governing factor and its 

c.o.v. is given by  

�N�J�] �S�]
�G AA

Nc
�u�u� 

2
1

     (well-separated mode)  (29) 

where �]  is the damping ratio (mode number omitted), cN  is the dimensionless duration as a 

multiple of natural periods, e.g., a duration of 100 sec for a 2Hz mode gives 2002100 � �u� cN ; 
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�JA  and �NA   account for finite s/n ratio and bandwidth, respectively, and are calculated according 

to Table 1 with (omitting index i ) �J�c�c replaced by 24/ �]�J eSS� �c . At the planning stage, data and 

hence the selected band is not available and so one may not be able to use (26) to assess �N. Instead, 

one may take ),2min( max�N�J�N �c�  to reflect that the usable bandwidth increases with s/n ratio 

�J�c up to a limit max�N  set to control modelling error against, e.g., existence of unaccounted modes 

and assumption of locally flat modal force PSDs and noise PSDs. Equation (29) can be rewritten to 

give the required data duration (as a multiple of natural period): 

�, �,

bandwidth finite
 todueinflation 

2

ratios/n  finite
 todueinflation 

2

duration req.
min. 'optimistic'

2       
2

1  1
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2� �]Q  will allow for || �F  up to 0.7. Remarkably, taking 25.1� �]Q  (only 25% inflation) is sufficient 

to allow for || �F  up 0.5, essentially because the bounding curve in Figure 5 is flat for small || �F . See 

Table 3 and Parts (e) and (f) of Figures 14, 16, 18 and 20 that report the statistics of || �F  in some 

field tests. On the other hand, the factor )||1)(1( 22 �F�U ����  in the s/n ratio �J�c�c mt
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The mathematical theory for the uncertainty law of close modes is much more complicated than 

that for well-
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Overestimating || 1q  by 2q , the sines and cosines by 1, and simplifying gives the upper bound in 

(19). The lower and upper bounds of ifR  can be attained by setting 21 ff �  and additionally 

f
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